Grey-box modeling for hot-spot temperature prediction of oil-immersed transformers in power distribution networks

نویسندگان

چکیده

Power transformers are one of the most costly assets in power grids. Due to increasing electricity demand and levels distributed generation, they more often loaded above their rated limits. Transformer ratings traditionally set as static limits, a controlled environment with conservative margins. Through dynamic transformer rating, rating is instead adapted actual working conditions transformers. This can help distribution system operators (DSOs) unlock unused capacity postpone grid investments. To this end, real-time information operating conditions, particular its hot-spot oil temperature, required. work proposes grey-box model that be used for online estimation forecasting temperature. It relies on limited non-intrusive measurements was developed using experimental data from DSO Jutland, Denmark. The thermal has proven able predict temperature high accuracy low computational time, which particularly relevant applications. With six-hour prediction horizon mean average error 0.4–0.6 °C. By choosing stochastic data-driven modeling approach we also provide intervals account uncertainty.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Support Vector Regression with Particle Swarm Optimization for Hot-spot temperature prediction of oil-immersed power transformer

The life expectancy and load capacity of oil-immersed power transformers are intimately associated with the winding hot spot temperature (HST). Thus, accurately predicting HSTs is essential in evaluating the life expectancy of power transformers and in preventing thermal failure. Previously, support vector machine (SVM) has been successfully employed to solve the regression problem of nonlinear...

متن کامل

Analyzing and Comparing the Hot-spot Thermal Models of HV/LV Prefabricated and Outdoor Oil-Immersed Power Transformers

The most important parameter in transformers life expectancy is the hot-spot temperature level which accelerates the rate of aging of the insulation. The aim of this paper is to present thermal models for transformers loaded at prefabricated MV/LV transformer substations and outdoor situations. The hot-spot temperature of transformers is studied using their top-oil temperature rise models. The ...

متن کامل

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Prediction of Temperature Distribution in the Hot Torsion Test Specimen

Hot torsion test (HTT) has extensively been used to analysis and physically model flow behavior and microstructure evolution of materials and alloys during hot deformation processes. In this test, the specimen geometry has a great influence in obtaining reliable test results. In this paper, the interaction of thermal-mechanical conditions and geometry of the HTT specimen was studied. The commer...

متن کامل

Online Hot Spot Prediction in Road Networks

Advancements in GPS-technology have spurred major research and development activities for managing and analyzing large amounts of position data of mobile objects. Data mining tasks such as the discovery of movement patterns, classification and outlier detection in the context of object trajectories, and the prediction of future movement patterns have become basic tools in extracting useful info...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainable Energy, Grids and Networks

سال: 2023

ISSN: ['2352-4677']

DOI: https://doi.org/10.1016/j.segan.2023.101048